Поиск по сайту  


Сто великих изобретений :



Толкование АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ


Первая в мире атомная электростанция была построена в СССР через десять лет после атомной бомбардировки Хиросимы. Этому важнейшему в истории техники событию предшествовала лихорадочная и напряженная работа по созданию собственного ядерного оружия. Эту работу возглавил видный ученый и талантливый организатор Игорь Курчатов. В 1943 году Курчатов создал в Москве свой исследовательский центр (в то время он носил название Лаборатории № 2, а позже был преобразован в Институт атомной энергии). В этой и в некоторых других лабораториях в кратчайшие сроки были повторены все исследования американских ученых, получены чистый уран и чистый гр?фит. В декабре 1946 года здесь же была осуществлена первая цепная реакция на опытном ядерном ураново-графитовом реакторе Ф1. Мощность этого реактора едва достигала 100 Вт.' Однако на нем удалось получить важные данные, послужившие основой для проектирования большого промышленного реактора, разработка которого уже шла полным ходом. Опыта по строительству такого реактора в СССР не было никакого. После некоторых размышлений Курчатов решил поручить эту работу НИИ Химмаш, которым руководил Николай Доллежаль. Хотя Доллежаль был чистый химикмашиностроитель и никогда не занимался ядерной физикой, его знания оказались очень ценными. Впрочем, собственными силами НИИ Химмаш тоже не сумел бы создать реактор. Работа пошла успешно только после того, как к ней подключилось еще несколько институтов. Принцип действия и устройство реактора Доллежалю были в общих чертах ясны: в металлический корпус помещались графитовые блоки с каналами для урановых блоков и регулирующих стержней - поглотителей нейтронов. Общая масса урана должна была достигать 448 рассчитанной физиками необходимой величины, при которой начиналась поддерживаемая цепная реакция деления атомов урана. В результате реакции деления ядер урана возникали не только два осколка (два новых ядра), но и несколько нейтронов Эти нейтроны первого поколения и служили для поддержания реакции, в результате которой возникали нейтроны второго поколения, третьего и так далее. В среднем на каждую тысячу возникших нейтронов только несколько рождались не мгновенно, в момент деления, а чуть позднее вылетали из осколков. Существование этих так называемых запаздывающих нейтронов, являющихся мелкой деталью в процессе деления урана, оказывается решающим для возможности осуществления управляемой цепной реакции. Часть из них запаздывает на доли секунды, другие - на секунды и более Количество запаздывающих нейтронов составляет всего 0,75% от их общего количества, однако они существенно (примерно в 150 раз) замедляют скорость нарастания нейтронного потока и тем самым облегчают задачу регулирования мощности реактора. Именно за это время, манипулируя поглощающими нейтроны стержнями, можно вмешаться в ход реакции, замедлить ее или ускорить. Большинство нейтронов рождается одновременно с делением, и за короткое время их жизни (примерно стотысячные доли секунды) невозможно как-либо повлиять на ход реакции, как невозможно остановить уже начавшийся атомный взрыв. Отталкиваясь от этих сведений, коллектив Доллежаля сумел быстро справиться с задачей. Уже в 1948 году был построен плутониевый завод с несколькими промышленными реакторами, а в августе 1949 года была испытана первая советская атомная бомба. После этого Курчатов мог уделить больше внимания мирному использованию атомной энергии. По его поручению Фейнберг и Доллежаль начали разрабатывать проект реактора для атомной электростанции. Первый делал физические расчеты, а второй - инженерные. То что ядерный реактор может быть не только производителем оружейного плутония, но и мощной энергетической установкой, стало ясно уже первым его создателем. Одним из внешних проявлений протекающей ядерной реакции наряду с радиоактивным излучением является значительное выделение теплоты. В атомной бомбе эта теплота освобождается мгновенно и служит одним из ее поражающих факторов. В реакторе, где цепная реакция находится как бы в тлеющем состоянии, интенсивное выделение тепла может продолжаться месяцы и даже годы, причем несколько килограммов урана могут выделить столько же энергии, сколько выделяют при сгорании нескольких тысяч тонн обычного топлива. Поскольку советские физики уже научились управлять ядерной реакцией, проблема создания энергетического реактора сводилась к поиску способов съема с него тепла. Опыт, полученный в ходе экспериментов Курчатовым, был очень ценным, однако не давал ответа на многие вопросы. Ни один из построенных к этому времени реакторов не был энергетическим. В промышленных реакторах тепловая энергия была не только не нужна, но и вредна - ее приходилось отводить, то есть охлаждать урановые блоки Проблема сбора и использования тепла, выделившегося в ходе ядерной реакции, ни в СССР, ни в США еще не рассматривалась. 449 Важнейшими вопросами на пути проектирования энергетического реактора для АЭС были: какой тип реактора (на быстрых или на медленных нейтронах) будет наиболее целесообразен, что должно являться замедлителем нейтронов (графит или тяжелая вода), что может служить теплоносителем (вода, газ или жидкий металл), какими должны быть его температура и давление. Кроме того, было много и других вопросов, например, о материалах, о безопасности для персонала и об увеличении КПД. В конце концов Фейнберг и Доллежаль остановились на том, что уже было опробовано: стали разрабатывать реактор на медленных нейтронах с графитовым замедлителем и водяным теплоносителем В их использовании уже был накоплен хороший практический и теоретический опыт Это предрешило успех их проекта. В 1950 году технический совет Министерства среднего машиностроения из нескольких предложенных вариантов выбрал реактор, разработанный НИИ Химмаш. Проектировать электростанцию в целом (ее решено было строить в Обнинске) поручили одному из Ленинградских НИИ, возглавляемому Гутовым. Планируемая мощность первой атомной электростанции 5000 кВт - во многом была выбрана случайно. Как раз тогда МАЭС списал вполне работоспособный турбогенератор мощностью 5000 кВт и переправил его в строящийся Обнинск. Под него и решили проектировать всю АЭС. Энергетический реактор был не столько промышленным, сколько научным объектом. Непосредственно строительством АЭС руководила Обнинская физико-энергетическая лаборатория, основанная в 1947 году. В первые годы здесь не было ни достаточных научных сил, ни необходимого оборудования Условия жизни также были далеки от приемлемых. Город только строился. Неасфальтированные улицы покрывались весной и осенью непролазной грязью, в которой безнадежно вязли машины. Большинство жителей ютилось в дощатых бараках и неуютных <финских> домиках. Лаборатория располагалась в совершенно случайных и не приспособленных для научных целей зданиях (одно - бывшая детская колония, другое - особняк Морозовых). Электричество вырабатывала старая паровая турбина на 500 кВт. Когда она останавливалась, весь поселок и стройка погружались в темноту. Сложнейшие расчеты производились вручную. Однако ученые (многие из которых только недавно вернулись с фронта) стойко переносили трудности. Мысль, что они проектируют и строят первую в мире атомную электростанцию, будоражила умы и возбуждала огромный энтузиазм Что касается чисто научных проблем, они тоже были очень непростыми. Принципиальное отличие энергетического реактора от промышленного заключалось в том, что во втором типе реактора вода служила только охладителем и никаких иных функций не несла. К тому же излишки тепла, отводимые водой, были таковы, что температура ее изрядно не дотягивала до точки кипения. Здесь же воде предстояло выступать в роли энергоносителя, то есть служить для образования пара, способного выполнять полезную работу. А значит, требовалось сколько возможно поднять температуру и давление. Для эффективной работы турбогенератора требовалось по крайней мере получить пар с температурой свыше 200 градусов и давлением 12 атм. (что, кстати, было для того времени очень мало, но решили пока ограничиться этими параметрами). Рис. 90-1. Схема АЭС: Р - реактор тепловой мощностью 30 000 кВт; ЦН - циркуляционный насос; ПЕГ - парогенератор (теплообменник); ТГ турбогенератор на 5000 кВт; К - конденсатор пара При строительстве за основу была взята конструкция промышленного реактора. Только вместо урановых стержней предусматривались урановые тепловыводящие элементы - твэлы. Разница между ними заключалась в том, что стержень вода обтекала снаружи, твэл же представлял собой двустенную трубку. Между стенками располагался обогащенный уран, а по внутреннему каналу протека ла вода. Расчеты показали, что при такой конструкции нагреть ее до нужной температуры много проще. По эскизным чертежам вырисовывался следующий облик реактора. В средней части цилиндрического корпуса диаметром более 1,5 м находится активная зона - графитовая кладка высотой около 170 см, пронизанная каналами. Одни из них предназначались для твэлов, другие - для стержней, поглощающих нейтроны и автоматически поддерживающих равновесие на заданном уровне. В нижнюю часть сборки твэлов должна поступать холодная вода (которая на самом деле отнюдь не холодная - температура ее около 190 градусов). Пройдя через тепловыводящие элементы и став на 80 градусов горячее, она попадала в верхнюю часть сборки, а оттуда - в коллектор горячей воды. Чтобы не вскипеть и не превратиться в пар (это могло вызвать ненормальную работу реактора) она должна была находиться под давлением в 100 атм. Из коллектора горячая радиоактивная вода текла по трубам в теплообменник-парогенератор, после чего, пройдя через циркулярный насос, возвращалась в коллектор холодной воды. Этот ток назывался первым контуром. Теплоноситель (зода) циркулировала в нем по замкнутому кругу, не проникая наружу. Во втором контуре вода выступала в роли рабочего тела. Здесь она была нерадиоактивна и безопасна для окружающих. Нагревшись в теплообменнике до 190 градусов и превратившись в пар с давлением 12 атм., она подводилась к турбине, где и производила свою полезную работу. Покинувший турбину пар должен был конденсироваться и снова направляться в парогенератор. КПД всей энергетической установки составлял 17%. Эта вроде бы простая в описании схема на самом деле была технически очень сложной. Теории реактора тогда не существовало - она рождалась вместе с ним. Особенно сложным элементом были твэлы, от устройства которых во многом зависело КПД всей установки. Процессы, протекавшие в них, были очень сложны со всех точек зрения: предстояло решить, как и каким образом загружать в них уран, до какой степени необходимо его обогащать, каким образом добиться циркуляции воды, находившейся под высоким давлением, и как обеспечить теплообмен. Из нескольких вариантов были выбраны твэлы, разработанные Влади 451 миром Малых - с ураново-молибденовым порошком (уран был обогащен до 5%), спрессованным с тонко измельченным магнием -- этот металл должен был создать эффективный тепловой контакт урано-молибденового сплава со стенкой твэла. Не только начинка твэла, но и его оболочка создавала проблему. Материал тепловыводящих элементов должен был обладать прочностью, противокоррозийной стойкостью и не должен был менять своих свойств под длительным воздействием радиации. Лучший с химической точки зрения материал - нержавеющая сталь - не нравился физикам, так как он сильно поглощал нейтроны. В конце концов, Доллежаль все-таки остановился на стали. Чтобы компенсировать ее поглощающие свойства, решено было увеличить процент обогащенного урана (уже много позже для твэлов был разработан специальный циркониевый сплав, удовлетворявший всем необходимым условиям). Изготовление твэлов и сварка нержавеющей стали оказались чрезвычайно трудными. Каждый твэл имел несколько Рис. 90-2. Схема твэла: С - прочная стальная труба; С' - тонкостенная трубка швов, а таких твэлов было 128. Между тем требования к герметичности швов предъявлялись самые высокие - их разрыв и попадание горячей воды под высоким давлением в активную зону реактора грозили бедой. Одному из многих институтов, которые трудились над этой проблемой, была поручена разработка технологии сварки нержавеющей стали. В конце концов работа была с успехом выполнена. Реактор был пущен в мае 1954 года, а в июне того же года АЭС дала первый ток. На первой АЭС была тщательно продумана система управления протекающими в реакторе процессами. Были созданы устройства для автоматического и ручного дистанционного управления регулирующими стержнями, для аварийной остановки реактора, приспособлений для замены твэлов. Известно, что ядерная реакция начинается лишь при достижении некоторой критической массы делящегося вещества. Однако в процессе работы реактора ядерное горючее выгорает. Поэтому необходимо рассчитать значительный запас топлива, чтобы обеспечить работу реактора более или менее значительное время. Влияние этого сверхкритического запаса на ход реакции компенсировалось специальными стержнями, поглощающими избыточные нейтроны. При необходимости увеличить мощ- Рис. 90-3. ность реактора (по мере выгорания горючего) регулирующие стержни несколько выдвигались из активной зоны реактора и устанавливались в таком положении, когда реактор находится на грани цепной реакции и идет активное деление ядер урана. Наконец, были предусмотрены стержни аварийной защиты, опускание которых в активную зону мгновенно гасило ядерную реакцию.

Найти все значения АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ:

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ - это ...

Толкование АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

Определение АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ означает ...

Синоним к АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

Реферат на тему АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ



Мы будем признательны Вам, если Вы разместите ссылку на нашу страницу:
На блоге


На форуме (bb-код):


Код нашей кнопки:
АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ


Прямая ссылка на эту страницу


//ССЫЛКИ БЫЛИ ТУТ

Все словари

Словарь Ожегова
Словарь Даля
Словарь Ушакова
Словарь церковных терминов
Энциклопедия юриста
Современный толковый словарь
Словарь психиатрических терминов
Словарь лекарственных трав
Современный словарь
Энциклопедия относительного и абсолютного знания
Энциклопедия мировых сенсаций XX века том 1-2
Энциклопедический справочник стран
Словарь Ефремовой
Энциклопедический словарь русской цивилизации
Энциклопедический словарь конституционного права
Словарь синонимов
Словарь воровского жаргона
Теософский словарь
Энциклопедический справочник стран и столиц
Энциклопедия чудес
Золотая книга эмиграции
Театральная энциклопедия
Сто великих изобретений
Полный словарь медицинских терминов
Полная акцентуированная парадигма по А. А. Зализняку
Kladr
Новейший философский словарь
Словарь по политологии
Философский энциклопедический словарь
Энциклопедия третьего Рейха
Казачий словарь-справочник
Энциклопедия значений имен
Энциклопедия обрядов и обычаев
Энциклопедия. История философии
Энциклопедия. Мифы древнего Египта

Ваши пожелания


© 2019 slovco.ru Словцо Контакты Rambler's Top100

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31 s32 s33 s34 s35 s36 s37 s38 s39 s40 s41 s42 s43 s44 s45 s46 s47 s48 s49 s50 s51 s52 s53 s54 s55 s56 s57 s58 s59 s60 s61 s62 s63 s64 s65 s66 s67 s68 s69 s70 s71 s72 s73 s74 s75 s76 s77 s78 s79 s80 s81 s82 s83 s84 s85 s86 s87 s88 s89 s90 s91 s92 s93 s94 s95 s96 s97 s98 s99 s100 s101 s102 s103 s104 s105 s106 s107 s108 s109 s110 s111 s112 s113 s114 s115 s116 s117 s118 s119 s120 s121 s122 s123 s124 s125 s126 s127 s128 s129 s130 s131 s132 s133 s134 s135 s136 s137 s138 s139 s140 s141 s142 s143 s144 s145 s146 s147 s148 s149 s150 s151 s152 s153 s154 s155 s156 s157 s158 s159 s160 s161 s162 s163 s164 s165 s166 s167 s168 s169 s170 s171 s172 s173 s174 s175 s176 s177 s178 s179 s180 s181 s182 s183 s184 s185 s186 s187 s188 s189 s190 s191 s192 s193 s194 s195 s196 s197 s198 s199 s200 s201 s202 s203 s204 s205 s206 s207 s208 s209 s210 s211 s212 s213 s214 s215 s216 s217 s218 s219 s220 s221 s222 s223 s224 s225 s226 s227 s228 s229 s230 s231 s232 s233 s234 s235 s236 s237 s238 s239 s240 s241 s242 s243 s244 s245 s246 s247 s248 s249 s250